skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crain, Robert A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an analysis of Hubble Space Telescope COS/G160M observations of CIVin the inner circumgalactic medium (CGM) of a novel sample of eightz∼ 0,L≈Lgalaxies, paired with UV-bright QSOs at impact parameters (Rproj) between 25 and 130 kpc. The galaxies in this stellar-mass-controlled sample (log10M/M∼ 10.2–10.9M) host supermassive black holes (SMBHs) with dynamically measured masses spanning log10MBH/M∼ 6.8–8.4; this allows us to compare our results with models of galaxy formation where the integrated feedback history from the SMBH alters the CGM over long timescales. We find that the CIVcolumn density measurements (NC IV; average log10NC IV,CH= 13.94 ± 0.09 cm−2) are largely consistent with existing measurements from other surveys ofNC IVin the CGM (average log10NC IV,Lit= 13.90 ± 0.08 cm−2), but do not show obvious variation as a function of the SMBH mass. By contrast, specific star formation rate (sSFR) is highly correlated with the ionized content of the CGM. We find a large spread in sSFR for galaxies with log10MBH/M> 7.0, where the CGM CIVcontent shows a clear dependence on galaxy sSFR but notMBH. Our results do not indicate an obvious causal link between CGM CIVand the mass of the galaxy’s SMBH; however, through comparisons to the EAGLE, Romulus25, and IllustrisTNG simulations, we find that our sample is likely too small to constrain such causality. 
    more » « less
  2. ABSTRACT Observational surveys have found that the dynamical masses of ultradiffuse galaxies (UDGs) correlate with the richness of their globular cluster (GC) system. This could be explained if GC-rich galaxies formed in more massive dark matter haloes. We use simulations of galaxies and their GC systems from the E-MOSAICS project to test whether the simulations reproduce such a trend. We find that GC-rich simulated galaxies in galaxy groups have enclosed masses that are consistent with the dynamical masses of observed GC-rich UDGs. However, simulated GC-poor galaxies in galaxy groups have higher enclosed masses than those observed. We argue that GC-poor UDGs with low stellar velocity dispersions are discs observed nearly face on, such that their true mass is underestimated by observations. Using the simulations, we show that galactic star formation conditions resulting in dispersion-supported stellar systems also leads to efficient GC formation. Conversely, conditions leading to rotationally supported discs lead to inefficient GC formation. This result may explain why early-type galaxies typically have richer GC systems than late-type galaxies. This is also supported by comparisons of stellar axis ratios and GC-specific frequencies in observed dwarf galaxy samples, which show GC-rich systems are consistent with being spheroidal, while GC-poor systems are consistent with being discs. Therefore, particularly for GC-poor galaxies, rotation should be included in dynamical mass measurements from stellar dynamics. 
    more » « less
  3. ABSTRACT We present a comparison of galaxy atomic and molecular gas properties in three recent cosmological hydrodynamic simulations, namely SIMBA, EAGLE, and IllustrisTNG, versus observations from z ∼ 0 to 2. These simulations all rely on similar subresolution prescriptions to model cold interstellar gas that they cannot represent directly, and qualitatively reproduce the observed z ≈ 0 H i and H2 mass functions (HIMFs and H2MFs, respectively), CO(1–0) luminosity functions (COLFs), and gas scaling relations versus stellar mass, specific star formation rate, and stellar surface density μ*, with some quantitative differences. To compare to the COLF, we apply an H2-to-CO conversion factor to the simulated galaxies based on their average molecular surface density and metallicity, yielding substantial variations in αCO and significant differences between models. Using this, predicted z = 0 COLFs agree better with data than predicted H2MFs. Out to z ∼ 2, EAGLE’s and SIMBA’s HIMFs and COLFs strongly increase, while IllustrisTNG’s HIMF declines and COLF evolves slowly. EAGLE and simba reproduce high-LCO(1–0) galaxies at z ∼ 1–2 as observed, owing partly to a median αCO(z = 2) ∼ 1 versus αCO(z = 0) ∼ 3. Examining H i, H2, and CO scaling relations, their trends with M* are broadly reproduced in all models, but EAGLE yields too little H i in green valley galaxies, IllustrisTNG and SIMBA overproduce cold gas in massive galaxies, and SIMBA overproduces molecular gas in small systems. Using SIMBA variants that exclude individual active galactic nucleus (AGN) feedback modules, we find that SIMBA’s AGN jet feedback is primarily responsible by lowering cold gas contents from z ∼ 1 → 0 by suppressing cold gas in $$M_*\gtrsim 10^{10}{\rm \,M}_\odot$$ galaxies, while X-ray feedback suppresses the formation of high-μ* systems. 
    more » « less